东国大学开发出自兼容忆阻器设备可实现多级操作和交叉阵列以形成神经网络
盖世汽车讯 近年来,人工智能和物联网发展迅速,推动了语音识别、自动驾驶汽车图像分类以及ChatGPT等大型语言模型等领域的进步。深度学习是人工智能的一个关键要素,它需要并行处理大量数据,而传统计算机在这方面的效率仍然很低。神经形态或类脑计算系统由人工神经元和突触组成,具有低功耗和高效的数据处理能力。
最有前途的神经形态计算半导体技术之一是电阻式随机存取存储器,这是一种忆阻器件。忆阻器件具有“记住”过去电气状态的独特能力。在RRAM中,这种记忆效应源于其金属-绝缘体-金属结构的绝缘层中导电细丝(CF)的形成和溶解。金属氧化物绝缘体在此过程中起着至关重要的作用。
然而,尽管氧化钛基RRAM具有多种优势,但它们也存在器件间差异,这是由CF形成过程中的过冲电流引起的。这可能会导致故障或意外擦除内存。目前缓解过冲电流的方法需要增加晶体管或外部电流顺应设置,这增加了复杂性。
声明:本网转发此文章,旨在为读者提供更多信息资讯,所涉内容不构成投资、消费建议。文章事实如有疑问,请与有关方核实,文章观点非本网观点,仅供读者参考。